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Two problems with mixed boundary conditions
for an elastic orthotropic strip�
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Abstract

Two problems are considered for an elastic orthotropic strip: the contact problem and the crack problem. Both problems are
reduced to integral equations of the first kind with different kernels, containing a singularity: logarithmic for the first problem and
singular for the second problem. Regular and singular asymptotic methods are employed to construct approximate solutions of these
integral equations. Numerical results are presented.
© 2006 Elsevier Ltd. All rights reserved.

Similar problems were considered earlier for an elastic isotropic strip (the contact problem in Ref. 1 and the crack
problem in Ref. 2).

1. Formulation of the contact problem

Suppose an elastic orthotropic strip of thickness h occupies the region |x| < ∞, 0 ≤ y ≤ h. The lower boundary
of the strip y = 0 is hinged and a rigid punch is indented into the upper boundary y = h by a force P. The area of
contact of the punch with the strip boundary is defined by the inequality |x| ≤ a. The axis of action of the force is
parallel to the y axis and is situated a distance e < a to the right of it. We will neglect the friction forces in the contact
area.
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By virtue of the above, we will have the following boundary conditions for the contact problem

(1.1)

Here v is the displacement along the y axis, �xy and �y are the shear and normal stresses, � is the translation of
displacement of the punch along the negative direction of the y axis due to the action of the force P, � is the angle of
rotation of the punch due to the action of the moment Pe, and f(x) is a function describing the shape of the base of the
punch.

We will assume that the strip is under plane-deformation conditions. The formulae of Hooke’s law for the strip can
then be represented in the form3

(1.2)

Here �x is the normal stress, �x, �y and �xy are the deformations, �ij is Poisson’s ratio, E1 and E2 are Young’s moduli
and G12 is the shear modulus (seven independent mechanical quantities in all). We must add to formulae (1.2) the
equilibrium equations

(1.3)

the deformation compatibility equation

(1.4)

and also the relation

(1.5)

2. The integral equation of the contact problem

(2.1)

Assuming we will satisfy the equilibrium equations (1.3). Then, substituting expressions (2.1) into expressions (1.2),
and then substituting the converted expressions (1.2) into Eq. (1.4), we obtain the following differential equation for
the Airy function

(2.2)

We will further assume that A > 0 and B > 0.
We will first consider an auxiliary problem with the boundary conditions

(2.3)



130 V.M. Aleksandrov / Journal of Applied Mathematics and Mechanics 70 (2006) 128–138

Investigating the Airy function in the form of a Fourier integral in x

(2.4)

and assuming for the present that A2 > B, from Eq. (2.2) we obtain the following expression for the Fourier transform

(2.5)

where c1, . . ., c4 are functions of �, which must be determined from the fact that boundary conditions (2.3) are satisfied.
Carrying out this determination, we obtain, as a result of solving auxiliary problem (2.3),

(2.6)

where Q(�) is the Fourier transform of the discontinuous function q̃(x) of the form (2.3).
We now return to the main problem. Satisfying the last boundary condition of (1.1) using relations (2.6) (the

remaining conditions of (1.1) have already been satisfied in the course of obtaining the first relation of (2.6)), we arrive
at the following integral equation in the contact-pressure function q(x)

(2.7)

We once again present the expressions for the function L(u) and the quantity � for A2 = B and A2 < B

(2.8)

Note that integral Eq. (2.7) does not change its form for the cases when A2 = B and A2 < B.

3. The asymptotic solution for a considerable relative thickness of the strip

For all three cases of the relation between the quantities A2 and B we have the formulae

(3.1)
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On the basis of relations (3.1), the kernel of integral Eq. (2.7) can be represented in the form1

(3.2)

The series in expression (3.2) converges absolutely when |t| < 2	.
Changing in integral Eq. (2.7) to dimensionless variables and notation using the formulae

(3.3)

and substituting expression (3.2) for K(t) into it, we will have

(3.4)

Here and henceforth the primes on dimensionless variables will be omitted.
We will seek a solution of integral Eq. (3.4) in the form of a series

(3.5)

Substituting expression (3.5) into integral Eq. (3.4) and equating terms of like powers of 
−2 on the left and right, we
arrive1 at an infinite system of successively solvable integral equations in the functions �n(x). We present the result of
this solution

(3.6)

The value of the dimensionless indenting force

(3.7)
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must be determined from the relation1

(3.8)

Substituting expression (3.6) into (3.8), we obtain

(3.9)

We again obtain an expression for the moment Pe acting on the punch. We introduce a dimensionless moment by
the relation

(3.10)

Substituting expression (3.6) into (3.10), we obtain

(3.11)

4. The asymptotic solution for a small relative thickness of the strip

We will confine ourselves to constructing the principal term of the asymptotic form of the solution of integral Eq.
(2.7). As was shown in Ref. 1, it is given by the expression

(4.1)

where the functions �(1)(t), �(2)(t) and �(0)(t) must be found from the integral equations

(4.2)

In formula (4.1) and here as before we have taken the dimensionless variables and the notation of (3.3).
The solution of the first two integral equations (4.2) can be found by the Wiener–Hopf method4. The solution of

the third integral equation of (4.2) can be found using the convolution theorem for a Fourier integral transformation5.
Note that, in representation (4.1), solutions of the boundary-layer type �(1)(t) and �(2)(t) automatically match with

the penetrating solution �(0)(t).
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5. Numerical example

We will confine ourselves to considering the case of a plane inclined punch, i.e. the case when f(x) ≡ 0. In this case

(5.1)

Substituting expression (5.1) into formulae (3.9) and (3.11) we obtain

(5.2)

The solution of the third integral equation of (4.2) for the case (5.1) can be found quite simply and has the form

(5.3)

The quantity l is given by formulae (3.1).
To construct solutions of the first two integral equations of (4.2) in analytical form, we will approximate the function

L(u) of the form (2.6) (or of the form (2.8)) by the expression

(5.4)

where we choose the constants C and D in such a way as to satisfy the relations

(5.5)

(compare with (3.1)).
Taking approximation (5.4) and expression (5.1) for the function g(x) into account, the solutions of the first two

integral equations of (4.2) can be constructed by the Wiener–Hopf method and have the form

(5.6)

From formulae (3.7) and (3.10) we now obtain the quantities N0 and N1

(5.7)
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Table 1

A 
 = 8 
 = 4 
 = 2 
 = 1 
 = 1/2

N0/�
2 1.429 2.033 3.157 3.338 5.747 10.63
1 1.293 1.786 2.738 2.899 4.859 8.832
1/2 1.207 1.633 2.477 2.636 4.332 7.764

N1/�
2 1.594 1.659 1.897 1.981 2.671 4.196
1 1.584 1.621 1.763 1.866 2.409 3.623
1/2 1.578 1.601 1.692 1.800 2.257 3.288

Substituting expressions (5.6) for the functions �(0)(t) and �(1)(t) into relations (5.7) and evaluating the integrals,
we obtain

(5.8)

We recall that the quantities d0, d1, d2 and d3 in formulae (5.2) and the quantities, C, D and l in formulae (5.8)
depend on the mechanical constants A and B of the form (2.2). We will present the results of a calculation for B = 1 for
three versions

(5.9)

In Table 1 we give the values of the quantities N0/� and N1/�, obtained from formulae (5.2) (they are shown on the
left of the vertical dashed line) and from formulae (5.8) (shown on the right) for the above three versions. It can be
seen that the asymptotic solutions for large and small 
 begin to close in at approximately 
 = 2.

6. Formulation of the crack problem

Suppose an elastic orthotropic strip of thickness 2h occupies the region |x| < ∞, −h ≤ y ≤ h. The boundaries of the
strip y = −h and y = h are hinged, while on the y = 0 axis there is a crack of length |x| ≤ a. The crack sides are loaded
with a pressure q(x). We will henceforth confine ourselves to considering the case when q(x) is an even function.
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By virtue of what was said above, for the crack problem we will have Eqs. (1.2)–(1.5) and the following boundary
conditions

(6.1)

7. The integral equation of the crack problem

We again introduce the Airy function by relations (2.1) and arrive at the differential Eq. (2.2).
Taking into account the symmetry of problem (6.1) about the y coordinate, we will consider initially the auxiliary

problem for a strip of thickness h with boundary conditions

(7.1)

Investigating the Airy function in the form of Fourier integral (2.4) and assuming for the present that A2 > B, we
obtain expression (2.5) for the Fourier transform �*(y, �) of the Airy function �(x, y). By then determining the
function ck(�) in this expression by satisfying boundary conditions (7.1), we finally obtain the following solutions of
the auxiliary problem

(7.2)

where �(�) is the Fourier transform of the discontinuous function �̃(x) of the form (7.1), and the function L(u) and the
quantity � are given by formulae (2.6).

We will now return to the main problem. Satisfying the last boundary condition of (6.1) using relations (7.2) (the
remaining conditions of (6.1) have already been satisfied during the course of obtaining relation (7.2)), we arrive at an
integral equation in the derivative of the function �(x), describing the displacements of points on the crack sides,

(7.3)

Expressions for the function L(u) and the quantity � for the case A2 = B and the case A2 < B have the form (2.8).
Integral Eq. (7.3) does not change its form for these cases.

8. The asymptotic solution for a considerable relative thickness of the strip

On the basis of relations (3.1), the kernel of integral Eq. (7.3) can be represented in the form2

(8.1)

The series in expression (8.1) for M(t) is absolutely convergent when |t| < 2	.
Changing in integral Eq. (7.3) to the dimensionless variables

(8.2)

and substituting expression (8.1) for M(t) into it, we will have

(8.3)

here and henceforth the primes on the dimensionless variables will be omitted.
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We will seek a solution of integral Eq. (8.3) in the form of a series (3.5) by substituting expression (3.5) into integral
Eq. (8.3) in the form of series (3.5). Substituting expression (3.5) into integral Eq. (8.3) and equating like powers of 
−2

on the left and right, we again arrive2 at an infinite system of successively solvable integral equations in the functions
�n(x). We present the result of this solution, taking into account the evenness of the function p(x)

(8.4)

9. The asymptotic solution for a small relative thickness of the strip

We will confine ourselves to constructing the principal term of the asymptotic form of the solution of integral Eq.
(7.3). It is given by expression (4.1), where, in view of the fact that the function p(x) is even, we have

(9.1)

while the functions �(1)(t) and �(0)(t) must now be found from the integral equations

(9.2)

The solution of the first integral equation of (9.2) can be found by the Wiener–Hopf method4. The solution of the
second integral equation of (9.2) can be found using the convolution theorem for a Fourier integral transformation.5

10. Numerical example

We will confine ourselves to considering the case when a uniform pressure acts on the crack sides, i.e. when

(10.1)

Substituting expression (10.1) into formula (8.4), we obtain

(10.2)

The solution of the second integral equation of (9.2) for case (10.1) is equal to zero.
To construct a solution of the first integral equation of (9.2) in analytical form, we will again use an approximation

of the function L(u) of the form (5.4), (5.5). Taking this approximation and expression (10.1) for the function p(x) into
account, the solution of the first integral equation of (9.2) can be constructed by the Wiener–Hopf method and has the
form

(10.3)
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Table 2

A 
 = 8 
 = 4 
 = 2 
 = 1 
 = 1/2

N/(q
√

a)
2 0.686 0.631 – 0.510 0.360 0.255
1 0.694 0.658 0.544 0.564 0.399 0.282
1/2 0.698 0.673 0.591 0.606 0.429 0.303

Bearing in mind the force fracture criterion,6 we determine the normal stress intensity factor at the crack tip (along
its extension) from the formula2

(10.4)

On the basis of expression (10.2) we will have

(10.5)

while on the basis of expressions (4.1) and (10.3) we obtain

(10.6)

The quantities a0, a1 and a2 in formula (10.5) and l in formula (10.6) depend on the mechanical constants A and B
of the form (2.2). For l we take the values shown in formulae (5.9). For the values of a0, a1 and a2 for the versions of
the relation between the constant A and B indicated in Section 5 for B = 1, we obtain

(10.7)

In Table 2 we give values of the quantity N/(q
√

a), obtained from formula (10.5) (they are shown on the left of
the vertical dashed line) and from formula (10.6) (shown on the right) for the above three versions. It can be seen that
the asymptotic solutions begin to approach one another for large and small values of 
, as previously, approximately
when 
 = 2. For version A = 2, the closure begins when 
 = 2.8 with an error of 6.6% (this is expressed by the absence
of terms of the order of 
−8 in (10.5)).
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